Travel demand generation using Bayesian Networks: an application to Switzerland

نویسندگان

چکیده

Thanks to their ability simulate the travel behavior at individual scale, agent-based models have gained popularity over last years. These are data-intensive, with regards transport supply and demand. In particular, a detailed description of population its is required. Bayesian Networks (BNs) directed acyclic graphs representing joint probability distributions. They recently been employed for synthesis daily activity patterns generation in studies showing that BNs effectively capture causality links existing between variables easily interpretable. Moreover, given flexible structure, can be adapted situations which data from various sources combined. this paper, our goal estimate BN both pattern Switzerland. We evaluate performance approach compared statistical matching algorithm using aggregated disaggregated metrics. we show understanding dependency structure linking characteristics mobility key generate representative synthetic agents patterns. This study contribution towards development interpretable, behaviorally rich demand models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Application of Discrete 3-level Nested Logit Model in Travel Demand Forecasting as an Alternative to Traditional 4-Step Model

This paper aims to introduce a new modelling approach that represents departure time, destination and travel mode choice under a unified framework. Through it, it is possible to overcome shortages of the traditional 4-step model associated with the lack of introducing actual travellers’ behaviours. This objective can be achieved through adopting discrete 3-level Nested Logit model that represen...

متن کامل

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2023

ISSN: ['1877-0509']

DOI: https://doi.org/10.1016/j.procs.2023.03.035